1. Consider $f(x)=2 x-7 \ln (x)+e^{2 x}$. Using the differentiation rules,

$$
f^{\prime}(x)=2-7\left(\frac{1}{x}\right)+(2) e^{2 x}=2-\frac{7}{x}+2 e^{2 x} .
$$

2. Consider $f(x)=5 \ln \left(\frac{1}{x}\right)-e^{-2 x}+2=5 \ln \left(x^{-1}\right)-e^{-2 x}+2=-5 \ln (x)-e^{-2 x}+2$.

The rules of differentiation give:

$$
f^{\prime}(x)=-5\left(\frac{1}{x}\right)-(-2) e^{-2 x}+0=2 e^{-2 x}-\frac{5}{x} .
$$

3. Consider the function

$$
f(x)=\frac{3}{e^{5 x}}+4 \ln \left(\frac{1}{\sqrt{x}}\right)-\frac{1}{x}=3 e^{-5 x}+4 \ln \left(x^{-\frac{1}{2}}\right)-x^{-1}=3 e^{-5 x}-2 \ln (x)-x^{-1} .
$$

The rules of differentiation give:

$$
f^{\prime}(x)=3(-5) e^{-5 x}-2\left(\frac{1}{x}\right)-(-1) x^{-2}=\frac{1}{x^{2}}-\frac{15}{e^{5 x}}-\frac{2}{x} .
$$

4. Consider the function $y=100\left(e^{-0.05 x}-e^{-0.2 x}\right)$. We take the derivative

$$
y^{\prime}(x)=100\left(-0.05 e^{-0.05 x}-(-0.2) e^{-0.2 x}\right)=5\left(4 e^{-0.2 x}-e^{-0.05 x}\right) .
$$

The domain of $y(x)$ is all x, so there are no vertical asymptotes. The y-intercept is where $x=0$ or $y=100(1-1)=0$. This is also the x-intercept, $(0,0)$. The horizontal asymptote occurs when $x \rightarrow+\infty$, when $y \rightarrow 0$. The critical point is where $y^{\prime}(x)=5\left(4 e^{-0.2 x}-e^{-0.05 x}\right)=0$, so

$$
4 e^{-0.2 x}=e^{-0.05 x} \quad \text { or } \quad e^{0.15 x}=4 \quad \text { or } \quad x=\frac{\ln (4)}{0.15} \approx 9.2420 .
$$

Since $x_{c}=\frac{\ln (4)}{0.15}=\approx 9.2420$, then $y\left(x_{c}\right) \approx 100\left(e^{-0.05 \cdot 9.242}-e^{-0.2 \cdot 9 \cdot 242}\right)=47.25$. This is a relative and absolute maximum. The graph is shown below on the left.

5. Consider the function $y(x)=x^{2}-2 \ln (x)$. We take the derivative

$$
\left.y^{\prime}(x)=2 x-2\left(\frac{1}{x}\right)=2 \quad \frac{x^{2}-1}{x}\right) .
$$

Domain for y is $0<x<+\infty$, so there is clearly no y-intercept. There is a vertical asymptote at $x=0$ (at the edge of the domain), but no horizontal asymptote. This equation cannot be solved for $y=0$, so x-intercept must be examined in another way. We will establish that the minimum is positive, so no intercepts of the x-axis exist. Critical points occur when $y^{\prime}(x)=0$ or $x^{2}-1=0$. Since $x>0$, then $x_{c}=1 . y(1)=1$, so there is a minimum at $(1,1)$. Besides being a relative minimum, it is also an absolute minimum. The graph is above to the right.

